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The study of the vibration of membranes is important in the design of drums,
speakers and receivers. The vibration of homogeneous membranes have been
discussed by Rayleigh [1] and Kuttler and Sigillito [2]. Composite membranes
composed of joining many strips of di!erent homogeneous pieces were studied by
Vodicka [3], Kato [4], Bhadra [5], Kalotas and Lee [6]. In these cases, the
governing equation was solved for each piece, then matched at the interfaces. The
continuously non-homogeneous rectangular membrane has been considered by
Masad [7], Laura et al. [8] and Wang [9]. The last source also reported an exact
solution of a continuously non-homogeneous annular membrane.

The present note studies the fundamental frequencies of a continuously
non-homogeneous circular membrane. The density (or thickness) is assumed to be
a sinusoidal function of radius. This class includes important wavy, ribbed
membranes and also convex or concave lens-like membranes.

The equation of motion for a non-homogeneous membrane is

+2w#k2o (x)w"0, (1)

where all lengths are normalized by the dimensional¸, w is the displacement, o(x) is
a density function with a mean of unity, and k is the constant normalized frequency

k"(frequency)¸J(mean density)/(tension per length). (2)

The boundary condition is that w"0 on the perimeter of the domain p. The
density function satis"es

1
p PPo (x) dp"1. (3)

Note that the total mass is "xed for all density functions. When the membrane is
homogeneous o (x)"1.

If o (x) is a function of radius only, equation (1) in polar co-ordinates (r, h)
becomes
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The separable solution is
w"cos(nh)u

n
(r), (5)

where u
n
(r) satis"es
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r2Du
n
"0. (6)

If the domain is a circle, the boundary conditions are

u
n
(0) bounded, u

n
(1)"0. (7)

In general, the eigenvalue k for each mode can be obtained by numerical
integration of equations (6, 7).

Consider the case of a circular membrane with a wavy density (or thickness)
variation given by

o (r)"1#e[cos(ar)#c]'0, (8)

where e, a, c are constants. The constant mass condition (3) gives

c"
2
a C

1!cos a
a

!sin aD . (9)

For a)n the density would be montonically decreasing from the center if e'0,
and increasing if e(0. For large a the density concentrations are periodic
concentric rings about the membrane center.

We also know the fundamental mode is axisymmetric, i.e., n"0. Equation (6)
gives

uA
0
#

u@
0
r
#k2[1#eScos(ar)#cT]u

0
"0. (10)

Since for linear vibrations the amplitude is arbitrary we can set

u
0
(0)"1. (11)

Due to symmetry,

u@
0
(0)"0. (12)

We guess k and integrate equations (10)}(12) by the Runge}Kutta algorithm and
check whether u

0
(1)"0 for the "rst time. By one parameter shooting the

eigenvalue k can be obtained without di$culty.
The results are shown in Figure 1; there the normalized fundamental frequency

k is plotted as a function of a for various constant amplitude e. The cross-section of
the membrane (if density is due to thickness) is also shown. The following are
observed.

(1) The frequency may be increased or decreased from the homogeneous frequency
of k

0
"2)4048, the larger the amplitude e the larger the changes. Changing the

sign of e does not re#ect k about k
0
.

(2) The increase or decrease in k depends on the periodicity parameter a. There are
certain a values where the frequency is insensitive to e and density variations,
thus close to k

0
.



Figure 1. The fundamental frequency for various amplitude e and frequency a. Exaggerated
cross-sections are shown.
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We "nd that the fundamental frequency for a circular membrane with periodic
density (or thickness) variations may be increased or decreased. By considering
nO0 and looking for eigenvalues of k close to k

j
"jth zero of Bessel function J

0
,

the higher modes and frequencies can be obtained.
For an annulus with boundaries at r"a and r"1, the method is slightly

modi"ed. Set u
n
(a)"0 and u@

n
(a)"1, guess k and integrate equation (6) as an

initial value problem. The eigenvalue k is obtained when u
n
(1)"0 is satis"ed.
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